

Physics Equations Sheet GCSE Physics (8463)

1	pressure due to a column of liquid = height of column × density of liquid × gravitational field strength (g)	<i>ρ</i> = <i>h</i> ρ g
2	(final velocity) ² – (initial velocity) ² = $2 \times \text{acceleration} \times \text{distance}$	$v^2 - u^2 = 2 \ a \ s$
3	force = time taken	$F = \frac{m \Delta v}{\Delta t}$
4	elastic potential energy = $0.5 \times \text{spring constant} \times (\text{extension})^2$	$E_e = \frac{1}{2} k e^2$
5	change in thermal energy = mass \times specific heat capacity \times temperature change	$\Delta E = m c \Delta \theta$
6	period = $\frac{1}{\text{frequency}}$	
7	magnification = $\frac{\text{image height}}{\text{object height}}$	
8	force on a conductor (at right angles to a magnetic field) carrying a current = magnetic flux density × current × length	F = B I l
9	thermal energy for a change of state = mass \times specific latent heat	E = m L
10	potential difference across primary coil potential difference across secondary coil = number of turns in primary coil number of turns in secondary coil	$\frac{V_{p}}{V_{s}} = \frac{n_{p}}{n_{s}}$
11	potential difference across primary coil × current in primary coil = potential difference across secondary coil × current in secondary coil	$V_p I_p = V_s I_s$
12	For gases: pressure × volume = constant	p V = constant