

## The Bridge to A level

Test Yourself Mark Scheme





|         |          |                                               |            | Buckingham So.                                                                                                                    |
|---------|----------|-----------------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Section | Question | Answer                                        | Marks      | Notes A A                                                                                                                         |
| 1       | 1        | $x = \pm 3$                                   | M2         | Use of quadratic formula $(M1)$<br>in x <sup>2</sup> $(M1)$                                                                       |
|         |          |                                               | M1         | $x^2 = 9$                                                                                                                         |
|         |          |                                               | A1         | cao                                                                                                                               |
|         | 2(i)     | $4(x-3)^2 - 9$                                | B1         | a = 4                                                                                                                             |
|         | -(1)     |                                               | B1         | b = 3                                                                                                                             |
|         |          |                                               | M1A1       | c = -9                                                                                                                            |
|         | 2(ii)    | (3,-9)                                        | B2         | B1 for each coordinate                                                                                                            |
|         | 2(11)    |                                               |            |                                                                                                                                   |
| 2       | 1        | 2-                                            | B3         | B2 for t omitted                                                                                                                  |
| 2       | 1        | $t = [\pm] \sqrt{\frac{2s}{a}}$ o.e.          | 10.5       | M1 for constructive first step                                                                                                    |
|         |          | L'IV a                                        |            | M1 for finding square root of their ' $t^2$ '                                                                                     |
|         | 2        |                                               | M1         | for $3x + mx = y + 5y$ oe                                                                                                         |
|         | 2        | 5 5 <u>6</u> V                                | M1<br>M1   | for $3x + mx = y + 3y$ de<br>for $x(3 + m)$ or ft sign error                                                                      |
|         |          | $[x=]\frac{6y}{3+m}$ as final answer          | A1         | $101 \times (3 + 11) 01 \text{ ft sign error}$                                                                                    |
|         |          |                                               | AI         |                                                                                                                                   |
|         | 3        |                                               | M1         | for multiplying by x-2                                                                                                            |
|         |          | $[x-1^{2y+3}] = 2^{x+3}$                      | M1         | for expanding brackets                                                                                                            |
|         |          | $[x=]\frac{2y+3}{y-1}$ o.e. or ft             | M1         | for cllecting x and 'other' terms                                                                                                 |
|         |          |                                               | M1         | for factorising and dividing                                                                                                      |
|         |          |                                               |            | Award all four marks only if fuly correct                                                                                         |
|         |          |                                               |            |                                                                                                                                   |
| 3       | 1        | $x = \frac{7}{11}$ $y = \frac{24}{11}$ oe www | B3         | B2 for one coordinate correct, or correct<br>solution not erxpressed as coordinates<br>(or) M1 for substitution or elimination of |
|         |          |                                               |            | one variable oe                                                                                                                   |
|         | 2        | a = 3                                         | M1         | Equating $5x - a$ and $2x + 18$ and                                                                                               |
|         |          | b = 32                                        |            | substituting $x = 7$                                                                                                              |
|         |          |                                               | A1A1       |                                                                                                                                   |
|         | 3        | x = -0.5  or  1                               | M1         | for $7-3x = 2(x^2 - 2x + 3)$ oe                                                                                                   |
|         | C        | y = 4.25  or  2                               | M1         | for quadratic in x $(2x^2 - x - 1 = 0 \text{ oe})$                                                                                |
|         |          |                                               | A1         | X                                                                                                                                 |
|         |          |                                               | A1         | y y                                                                                                                               |
|         |          |                                               |            |                                                                                                                                   |
| 4       | 1(i)     | 3√6                                           | M1         | for $\sqrt{4x6}$ oe seen                                                                                                          |
|         | - (-)    | 570                                           | A1         |                                                                                                                                   |
|         | 1(ii)    | $10 + 2\sqrt{7}$                              | M1         | for attempt to multiply num and denom                                                                                             |
|         | 1(11)    |                                               | 1111       | by $5 + \sqrt{7}$                                                                                                                 |
|         |          |                                               | M1         | for 18 or $25 - 7$ seen                                                                                                           |
|         |          |                                               | A1         | 101 10 0f 25 - 7 seen                                                                                                             |
|         | 2(i)     | 20 /7                                         | M1         | for 20 / or 2 / or a                                                                                                              |
|         | L (1)    | 28√6                                          | A1         | for $30\sqrt{6}$ or $2\sqrt{6}$ oe                                                                                                |
|         |          |                                               | <b>A</b> 1 |                                                                                                                                   |
|         | 2(ii)    | 40 12 JE                                      | DЛ         | for 10                                                                                                                            |
|         | 2(ii)    | 49 - 12√5                                     | B2<br>B1   | for 49                                                                                                                            |
|         | 2(ii)    | 49 - 12√ <del>5</del>                         | B2<br>B1   | for $12\sqrt{5}$                                                                                                                  |
|         | 2(ii)    | 49 - 12√ <del>5</del>                         |            | _                                                                                                                                 |



|   |       |                                                                  |      | Buckingham &                              |
|---|-------|------------------------------------------------------------------|------|-------------------------------------------|
| 5 | 1(i)  | 9                                                                | M1   | for 3 <sup>2</sup> oe                     |
|   |       |                                                                  | A1   |                                           |
|   | 1(ii) | 8 (condone -8 or $\pm 8$ )                                       | M1   | for $16^{0.25} = 2$                       |
|   |       |                                                                  | A1   | and                                       |
|   | 2(i)  | $4x^4y$                                                          | M1   | for two elements correct                  |
|   |       |                                                                  | A1   | for two elements correct                  |
|   | 2(ii) | 32                                                               | M1   | for $2^5$ oe                              |
|   |       |                                                                  | A1   |                                           |
|   | 3     | $\frac{4}{27}$                                                   | B1   | numerator                                 |
|   |       | 27                                                               | B1   | denominator                               |
|   |       |                                                                  |      |                                           |
| 6 | 1     | Grad of $AB = -3$                                                | B1   | either gradient                           |
|   |       | Grad of BC = $\frac{1}{2}$                                       |      |                                           |
|   |       | 5                                                                | B1   | product of gradients need to equal -1     |
|   |       | product of gradients = $-1$                                      |      |                                           |
|   | 2     | (3,6)                                                            | B1   |                                           |
|   | 3     | Coordinates (0,2) (0.5,0)                                        | M1   | for $y = -4x + c$                         |
|   |       |                                                                  | M1   | for $y = -4x + 14$                        |
|   |       |                                                                  | A1A1 | one mark for each set of coordinates      |
|   | 4     | y = 3x - 7                                                       | M1   | Gradient = 3                              |
|   |       |                                                                  | M1   | Subst in $(4,5)$ into their 'y = mx + c'  |
|   |       |                                                                  | A1   |                                           |
|   |       |                                                                  |      |                                           |
| 7 | 1     | Cubic the correct way up                                         | G1   |                                           |
|   |       | x-axis cuts at -1, 2, 4 shown                                    | G1   |                                           |
|   |       | y-axis cuts at 8 shown                                           | G1   |                                           |
|   | 2     | Sketch of cubic correct way up                                   | G1   |                                           |
|   |       | Curve through $(0,0)$                                            | G1   |                                           |
|   |       | Curve touches x-axis at x=3                                      | G1   |                                           |
|   | 3     | Correct graph with clear                                         | G2   | (G1 for only one branch correct0          |
|   |       | asymptote at $x = 2$                                             |      |                                           |
|   |       | (0, -0.5) shown                                                  | G1   |                                           |
|   | 4     | 10                                                               | B1   |                                           |
|   |       |                                                                  |      |                                           |
| 8 | 1     | $y = x^{2} - 8x + 5$<br>f(x - 3) = (x - 3)^{3} - 5(x - 3) + 2    | B1   |                                           |
|   | 2     | $f(x-3) = (x-3)^3 - 5(x-3) + 2$                                  | B1   | Substitution                              |
|   |       | $(x^2 - 6x + 9)(x - 3)$                                          | B1   | Partial expansion of cubic term           |
|   |       | $(x^2 - 6x + 9)(x - 3)$<br>f(x - 3)= $x^3 - 3x^2 - 6x^2 + 18x$   |      | _                                         |
|   |       | +9x - 27 - 5x + 15 + 2                                           | A1   | All correct unsimplified                  |
|   |       | $=x^{3}-9x^{2}+22x-10$                                           | B1   | Correct consolidation                     |
|   | 3     | $\frac{=x^3 - 9x^2 + 22x - 10}{f(x-4) = 2(x-4)^3 + 7(x-4)^2 - }$ | M1   | Substitution                              |
|   |       | 7(x-4) - 12                                                      |      |                                           |
|   |       |                                                                  | M1   | Correct expansion of one pair of brackets |
|   |       | $2x^3 - 17x^2 + 33x$                                             | M1   | correct completion to given answer        |
|   | 4     | $\frac{2x^3 - 17x^2 + 33x}{(x+1-3)(x-2-3)(x-4-3)}$               | M1   | Allow one slip                            |
|   |       | ie $(x-2)(x-5)(x-7)$                                             | A1   | Oe                                        |
|   | 1     |                                                                  |      |                                           |



|    |       |                                      |    | Buckingham Ser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----|-------|--------------------------------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9  | 1     | $Tan \ 42^\circ = \frac{opp}{adj}$   | M1 | 1,1°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|    |       | $0.9004 = \frac{height of pole}{15}$ | M1 | all and a second |
|    |       | 13.5(06) m = height of pole          | A1 | - South                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|    | 2     | $\pm \frac{\sqrt{13}}{4}$            | B3 | B2 for either $-\frac{\sqrt{13}}{4}$ or $\frac{\sqrt{13}}{4}$ or $\pm \frac{\sqrt{13}}{\sqrt{16}} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|    |       |                                      |    | or M1 for $\sqrt{13}$ seen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|    | 3     | (0, 0)                               | B1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |       | (90, 1)                              | B1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |       | (270, -1)                            | B1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |       | (360, 0)                             | B1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |       |                                      |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10 | 1(i)  | C = 141.1                            | M1 | Correct attempt at cosine rule                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|    |       | Bearing = 038. 8 (accept             | M1 | Correct full method for C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|    |       | 038.9)                               | A1 | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|    |       | ,<br>                                | A1 | Bearing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|    | 1(ii) | 3030 to 3050 acceptable              | M1 | Correct use of 0.5xaxbxsinC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    |       |                                      | A1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | 2     |                                      | M1 | Correct use of sine rule                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|    |       | AB = 7.80 (or better, 7.799)         | A1 | AB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|    |       |                                      | M1 | 2 x 0.5 x 'their AB' x 11.4 x sin 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|    |       | Area = $52.2$ to $52.3$              | A1 | Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|    |       | A1ca = 32.2  to  32.3                |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

