

The Bridge to A level

Diagnosis Worked Solutions

1 Solving quadratic equations

(2)

(4)

(3)

Question 1

Solve
$$x^2 + 6x + 8 = 0$$

 $(x+2)(x+4) = 0$

$$x = -2 \text{ or } -4$$

Question 2

Solve the equation $y^2 - 7y + 12 = 0$

Hence solve the equation $x^4 - 7x^2 + 12 = 0$

$$y^{2} - 7y + 12 = 0$$

$$(y - 3)(y + 4) = 0 \rightarrow y = 3 \text{ or } y = 4$$

$$x^{4} - 7x^{2} + 12 = 0 \rightarrow \text{ let } x^{2} = y$$

$$(x^{2})^{2} - 7x^{2} + 12 = 0 \rightarrow y^{2} - 7y + 12 = 0 \rightarrow y = 3 \text{ or } y = 4$$

$$\rightarrow x^{2} = 3 \text{ or } x^{2} = 4$$

$$\rightarrow x = \pm \sqrt{3} \text{ or } x = \pm 2$$

Question 3

- (i) Express $x^2 6x + 2$ in the form $(x-a)^2 b$ $x^2 - 6x + 2 = (x-3)^2 - 9 + 2$ $= (x-3)^2 - 7$
- (ii) State the coordinates of the minimum value on the graph of $y = x^2 6x + 2$ Minimum point of $x^2 - 6x + 2$ is therefore (3, -7)

(1)

2 <u>Changing the subject</u>

Question 1

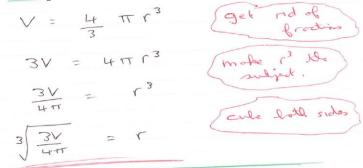
Make v the subject of the formula $E = \frac{1}{2} \text{ mv}^2$

			mv2	
=>	26	>	mv2	-
=)	2E m	_	V2	
+	26		= V	/

(3)

Question 2

Make r the subject of the formula $V = \frac{4}{3} \Pi r^2$



(3)

Question 3

Make c the subject of the formula $P = \frac{C}{C+4}$

$$P = \frac{C}{C+4}$$

$$P = \frac{C}{C+4$$

(4)

3 <u>Simultaneous equations</u>

Question 1

Find the coordinates of the point of intersection of the lines y = 3x + 1 and x + 3y = 6

$$y = 3x + 1 \text{ and } x + 3y = 6$$

$$x + 3(3x + 1) = 6$$

$$x + 9x + 3 = 6$$

$$10x = 3$$

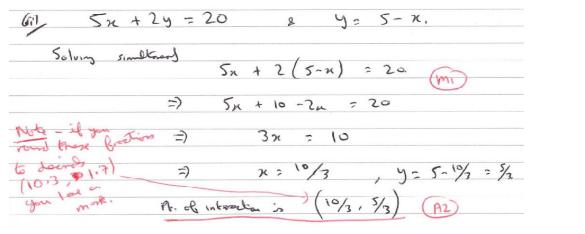
$$x = \frac{3}{10}$$

$$x = \frac{9}{10} + 1$$

$$= \frac{9}{10$$

Question 2

Find the coordinates of the point of intersection of the lines 5x + 2y = 20 and y = 5 - x



Question 3

Solve the simultaneous equations

$$x^2 + y^2 = 5$$

$$y = 3x + 1$$

Sub is
$$y = 3x + 1$$
 into expression 2.
 $x^2 + (3x + 1)^2 = 5$ | Let $x = \frac{7}{5}$
 $x^2 + (3x + 1)(3x + 1) = 5$ | $y = (3x^2 + 5) + 1$
 $x^2 + 9x^2 + 3x + 3x + 1 = 5$ | $= \frac{6}{5} + \frac{7}{5} = \frac{11}{5}$
 $10x^2 + 6x - 4 = 0$ | Let $x = -1$
 (-2) | $y = (3x - 1) + 1$
 $5x^2 + 3x - 2 = 0$ | $y = (3x - 1) + 1$
 $= -3 + 1$
 $= -2$
 $(5x - 2)(x + 1) = 0$
 $x = \frac{2}{5}$ or $x = -1$

Total / 10

(4)

(3)

School (School

4 Surds

Question 1

(i) Simplify $(3 + \sqrt{2})(3 - \sqrt{2})$

$$(3+52)(3-52)$$

$$= 3^2 + 352 - 352 - (52)^2$$

$$= 7$$

(2)

(3)

(ii) Express $\frac{1+\sqrt{2}}{3-\sqrt{2}}$ in the form $a+b\sqrt{2}$ where a and b are rational

$$\frac{\left(1+\sqrt{52}\right)}{\left(3-\sqrt{52}\right)} = \frac{\left(1+\sqrt{52}\right)\left(3+\sqrt{52}\right)}{\left(3-\sqrt{52}\right)\left(3+\sqrt{52}\right)} = \frac{3+\sqrt{52}+3\sqrt{52}+\sqrt{52}}{7}$$

$$= \frac{5+\sqrt{52}+\sqrt{52}}{7}$$

$$= \frac{5+\sqrt{52}+\sqrt{52}}{$$

Question 2

(i) Simplify $5\sqrt{8} + 4\sqrt{50}$. Express your answer in the form $a\sqrt{b}$ where a and b are integers and b is as small as possible.

 $= 30 \sqrt{2}$ (2)

(ii) Express $\frac{\sqrt{3}}{6-\sqrt{3}}$ in the form $p+q\sqrt{3}$ where p and q are rational

$$\frac{\sqrt{3}}{6-\sqrt{3}} = \frac{\sqrt{3}}{6-\sqrt{3}} \times \frac{(6+\sqrt{3})}{(6+\sqrt{3})}$$

$$= \frac{\sqrt{3} \times 6 + \sqrt{3}\sqrt{3}}{6^2 - (\sqrt{3})^2}$$

$$= \frac{6\sqrt{3} + 3}{36-3}$$

$$= \frac{3}{33} + \frac{6}{33} = \frac{3}{33}$$

$$= \frac{1}{11} + \frac{2}{11} = \frac{\sqrt{3}}{3}.$$

(3)

5 **Indices**

Question 1

Simplify the following

- (i)
- (ii) $a^6 \div a^{-2}$
- $(9a^6b^2)^{-0.5}$ (iii)

- (1)
- (1)
- (3)
- (i) $a^{\circ} = 1$ (ii) $a^{\circ} = 1$ (iii) $a^{\circ} = a^{\circ} = a^{$

Question 2

- Find the value of $\left(\frac{1}{25}\right)^{-0.5}$ (i)
- Simplify $\frac{(2x^2y^3z)^5}{4v^2z}$ (ii)

ii)
$$\frac{(2x^{2}y^{3}z)^{5}}{4y^{2}z} = \frac{2 x y^{5}z^{5}}{2^{2}y^{2}z^{4}}$$

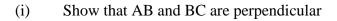
$$= 2 x y^{5-2} z^{5-1}$$

$$= 2^{3}x^{9}y^{3}z^{4} = 8x^{9}y^{3}z^{4}$$

6 Properties of Lines

Question 1

A (0,2), B (7,9) and C (6,10) are three points.



Grad of AB =
$$\frac{9-2}{7-0}$$
 = 1

Grad of BC =
$$\frac{10-9}{6-7}$$
 = -1

Product of gradients = $1 \times -1 = -1 \rightarrow AB$ and BC perpendicular

(ii) Find the length of AC

$$(6-0)^2 + (10-2)^2 = AC^2$$

AC = 10

Question 2

Find, in the form y = mx + c, the equation of the line passing through A (3,7) and B (5,-1). Show that the midpoint of AB lies on the line x + 2y = 10

$$m = \frac{-1-7}{5-3} = -\frac{8}{2} = -4$$

$$y = -4x + C$$
Substitute in (3,7) [5,1] would do equally on real or real o

(3)

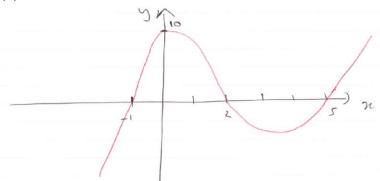
(2)

(5)

Sketching curves 7

Question 1

In the cubic polynomial f(x), the coefficient of x^3 is 1. The roots of f(x) = 0 are -1, 2 and 5. Sketch the graph of y = f(x)



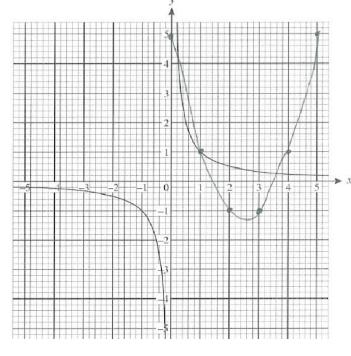
Question 2 Sketch the graph of $y = 9 - x^2$

(3)

(3)

Question 3

The graph below shows the graph of $y = \frac{1}{x}$ On the same axes plot the graph of $y = x^2 - 5x + 5$ for $0 \le x \le 5$



70	0	1	2	3	4	5
X	0	1	4	q	16	25
-5x	0	-5	-10	-15	-20	-25
+5	+2	+5	+2	+5	+5	+2
9	5	i	-1	-1	1	5

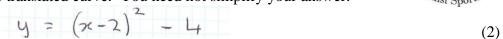
(4)

8 Transformation of functions

Question 1

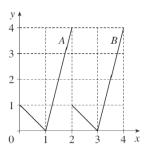
The curve $y = x^2 - 4$ is translated by (20)

Write down an equation for the translated curve. You need not simplify your answer.

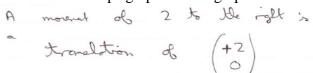


Question 2

This diagram shows graphs A and B.



(i) State the transformation which maps graph A onto graph B



(ii) The equation of graph A is y = f(x).

Which one of the following is the equation of graph B?

$$y = f(x) + 2$$

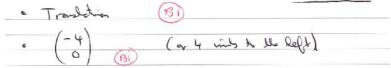
$$y = f(x) - 2$$

$$y = f(x+2)$$

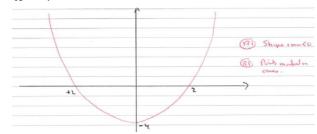
$$y = f(x-2)$$

Question 3

(i) Describe the transformation which maps the curve $y = x^2$ onto the curve $y = (x+4)^2$



(ii) Sketch the graph of $y = x^2 - 4$



Total / 10

9 Trigonometric ratios

(2)

(2)

Buckingham Schoo

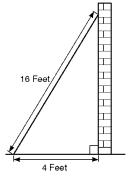
(2)

(2)

(2)

Question 1

Sidney places the foot of his ladder on horizontal ground and the top against a vertical wall. The ladder is 16 feet long.



The foot of the ladder is 4 feet from the base of the wall.

(i) Work out how high up the wall the ladder reaches. Give your answer to 3 significant figures.

$$\sqrt{16^2 - 4^2}$$

 $\sqrt{256}$ -16 correct substitution (M1)

√240

15.49

$$15.5 (3sf)$$
 (A1)

(ii) Work out the angle the base of the ladder makes with the ground. Give your answer to 3 sig fig $\cos x = \frac{4}{16}$ correct ratio and substitution (M1)

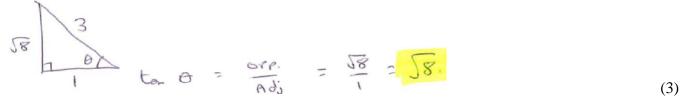
$$\cos x = 0.25$$

$$x = 75.522$$

$$x = 75.5^{\circ}$$
 (A1)

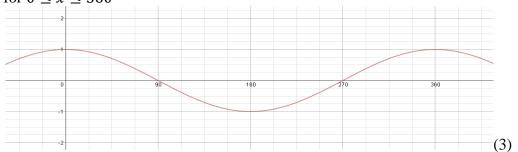
Question 2

Given that $\cos \Theta = \frac{1}{3}$ and Θ is acute, find the exact value of $\tan \Theta$



Question 3

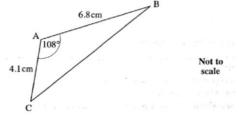
Sketch the graph of $y = \cos x$ for $0 \le x \le 360^{\circ}$



Total / 10

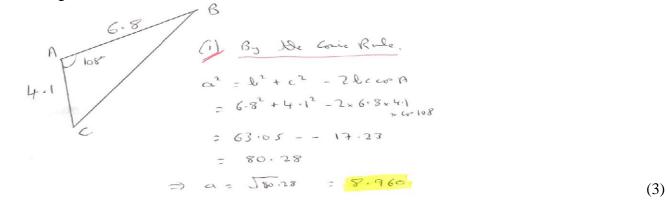
10 Sine / Cosine Rule

Question 1



For triangle ABC, calculate

(i) the length of BC



(ii) the area of triangle ABC

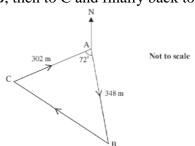
Area ob a Triongle
$$= \frac{1}{2} \text{ all sin C}$$

$$= \frac{1}{2} \times 4 \cdot 1 \times 6 \cdot 8 \times \sin 108$$

$$= 13 \cdot 26$$
(3)

Question 2

The course for a yacht race is a triangle as shown in the diagram below. The yachts start at A, then travel to B, then to C and finally back to A.



Calculate the total length of the course for this race.

$$C_{302} = 302^{2} + 348^{2} - 2 \times 302 \times 348 \times 672$$

$$C_{32} = 302^{2} + 348^{2} - 2 \times 302 \times 348 \times 672$$

$$C_{32} = 384$$

$$Total length = 384 + 650 = 1034m$$
(4)

