

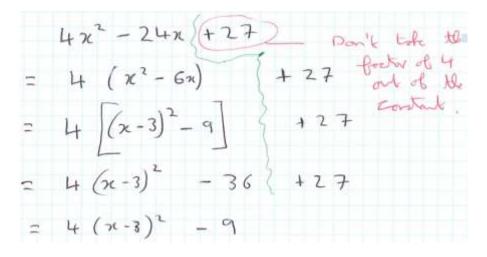
The Bridge to A level

Test Yourself Worked Solutions

1 <u>Solving quadratic equations</u>

Question 1

Find the real roots of the equation $x^4 - 5x^2 - 36 = 0$ by considering it as a quadratic equation in x^2


Treat as a quadratic in x^2 .

Factorise $(x^2 - 9)(x^2 + 4) = 0$ $\rightarrow \quad (x^2 - 9) = 0 \quad \text{or} \quad (x^2 + 4) = 0$ $\rightarrow \quad x^2 = 9 \quad \text{or} \quad x^2 = -4$ $\rightarrow \quad x = \pm 3 \quad \text{or} \quad \text{No real roots}$ $\rightarrow \quad x = \pm 3$

1	Λ	`
(4	4	. 1
١.		,

Question 2

(i) Write $4x^2 - 24x + 27$ in the form of $a(x - b)^2 + c$

(ii) State the coordinates of the minimum point on the curve $y = 4x^2 - 24x + 27$.

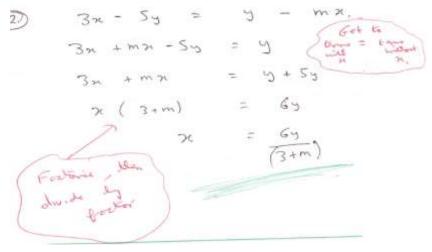
Minimum point at (3,-9)

Total / 10

(2)

(4)

Changing the Subject


Question 1

2

Make t the subject of the formula $s = \frac{1}{2}at^{2}$ $S = \frac{1}{2}at^{2}$ $2s = at^{2}$ $\frac{25}{a} = t^{2}$ $t = \pm \sqrt{\frac{25}{a}}$

Question 2

Make x the subject of 3x - 5y = y - mx

Question 3

Make x the subject of the equation $y = \frac{x+3}{x-2}$

$$y = \frac{x+3}{x-2}$$

$$y(x-2) = x+3$$

$$xy - 2y = x+3$$

$$xy - x = 2y+3$$

$$x(y-1) = 2y+3$$

$$x = \frac{2y+3}{y-1}$$

Total / 10

(4)

(3)

(3)

(3)

3 <u>Simultaneous equations</u>

Question 1

Find the coordinates of the point of intersection of the lines x + 2y = 5 and y = 5x - 1

 $\begin{aligned} x + 2(5x-1) &= 5\\ x + 10x - 2 &= 5\\ 11x &= 7\\ x &= \frac{7}{11} \qquad y = \frac{35}{11} - 1 \qquad y = \frac{24}{11} \end{aligned}$

Question 2

The lines y = 5x - a and y = 2x + 18 meet at the point (7,*b*). Find the values of *a* and *b*.

$$5x - a = 2x + 18$$

$$35 - a = 14 + 18$$

$$a = 3 \quad b = 35 - 3 = 32$$
(3)

Question 3

A line and a curve has the following equations :

$$3x + 2y = 7$$
 $y = x^2 - 2x + 3$

Find the coordinates of the points of intersection of the line and the curve by solving these simultaneous equations algebraically

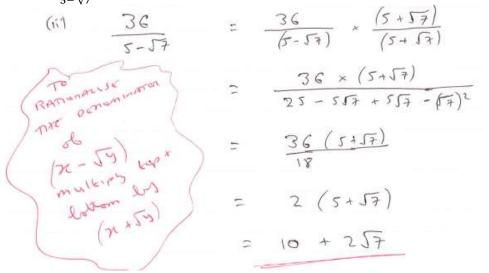
Substitute y from 2nd equation into 1st.

$$3x + 2(x^2 - 2x + 3) = 7$$

 $3x + 2x^2 - 4x + 6 = 7$
 $2x^2 - x + 6 = 7$
 $2x^2 - x - 1 = 0$
Factorize: $(2x+1)(x-1) = 0$
 $reads = 2x + 1 = 0 \text{ or } x - 1 = 0$
 $2x = -1$ or $x = 1$
when $x = -\frac{1}{2}$: $de_{1}x = 1$ First point $(-\frac{1}{2}, 4.25)$
 $(3x - \frac{1}{2}) + 2y = 7$ $(3x + 1) + 2y = 7$ Second point $(1, 2)$.
 $-1.5 + 2y = 7$ $3 + 2y = 7$
 $y = 8.5$ $2y + 4y = 7$.

Total / 10

(4)


(2)

4 <u>Surds</u>

Question 1

(i) Simplify $\sqrt{24} + \sqrt{6}$ (i) $\sqrt{24} + \sqrt{6}$ $= \sqrt{4}\sqrt{6} + \sqrt{6}$ $= \sqrt{4}\sqrt{6} + \sqrt{6}$ $= \sqrt{2}\sqrt{6} + \sqrt{6}$ $= \sqrt{2}\sqrt{6} + \sqrt{6}$ $= \sqrt{2}\sqrt{6} + \sqrt{6}$

(ii) Express $\frac{36}{5-\sqrt{7}}$ in the form $a + b\sqrt{7}$, where a and b are integers.

Question 2

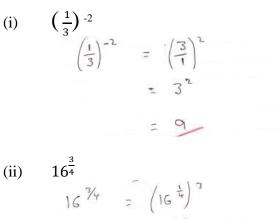
(i) Simplify $6\sqrt{2} \times 5\sqrt{3} - \sqrt{24}$ + i) $6\sqrt{2} \times 5\sqrt{3} - \sqrt{24}$ = $30\sqrt{6} - \sqrt{4}\sqrt{6}$ = $28\sqrt{6}$

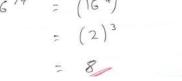
(ii) Express $(2 - 3\sqrt{5})^2$ in the form $a + b\sqrt{5}$, where a and b are integers. $(2 - 3\sqrt{5})(2 - 3\sqrt{5}) = 4 - 6\sqrt{5} - 6\sqrt{5} + 9\sqrt{5}$ $= 49 - 12\sqrt{5}$. (3)

Total / 10

(2)

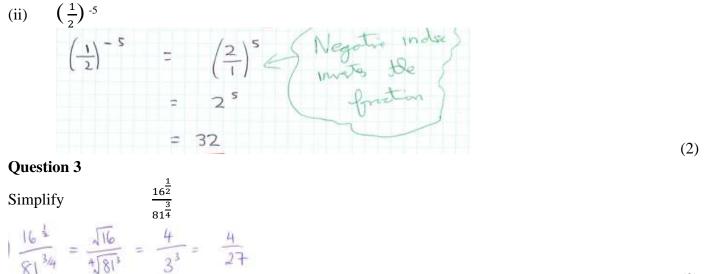
(3)


(3)



5 <u>Indices</u>

Question 1


Find the value of the following.

Question 2

(i) Find a, given that $a^3 = 64x^{12}y^3$ $a^3 = 64x^{12}y^3$ $= 4^3(x^4)^3y^3$ $= (4x^3y)^3$ $\Rightarrow a = 4x^3y^3$

(2)

(2)

(2)

(2)

(4)

(3)

6 <u>Properties of Lines</u>

Question 1

The points A (-1,6), B (1,0) and C (13,4) are joined by straight lines. Prove that AB and BC are perpendicular.

Grad of AB =	$\frac{0-6}{11}$	=	-3			
Grad of BC =	$\frac{4-0}{13-1}$	=	$\frac{1}{3}$			
Product of gradients	is =	$-3 x \frac{1}{3}$		= -1.	Hence AB and BC are perpendicular.	(2)

Question 2

A and B are points with coordinates (-1,4) and (7,8) respectively. Find the coordinates of the midpoint, M, of AB.

Midpoint is
$$(\frac{7+-1}{2}, \frac{8+4}{2}) = (3, 6)$$
 (1)

Question 3

A line has gradient -4 and passes through the point (2,-6). Find the coordinates of its points of intersection with the axes.

Equation of line is (y - 6) = -4(x - 2) ie y = -4x + 2

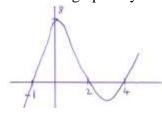
$x = 0 \rightarrow$	y = 2	Coordinates (0,14)
$y = 0 \rightarrow$	x = 0.5	Coordinates (3.5,0)

Question 4

Find the equation of the line which is parallel to y = 3x + 1 and which passes through the point with coordinates (4,5).

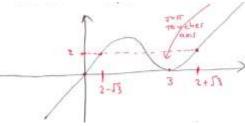
Gradient 3

(y-5) = 3(x-4)

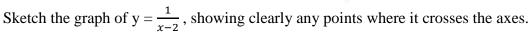

 \rightarrow y = 3x - 7

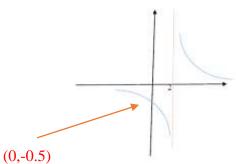
Total / 10

7 <u>Sketching curves</u>

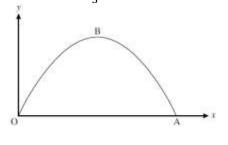

Question 1

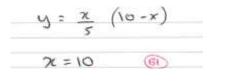
You are given that f(x) = (x + 1)(x - 2)(x - 4). Sketch the graph of y = f(x)


Question 2


Sketch the graph of $y = x(x - 3)^2$

Question 3


This diagram shows a sketch of the graph of $y = \frac{1}{x}$



Question 4

This curve has equation $y = \frac{1}{5}x$ (10 - x). State the value of x at the point A.

Total / 10

(3)

(3)

(3)

(1)

Transformation of functions

8

Question 1

The graph of $y = x^2 - 8x + 25$ is translated by $\begin{pmatrix} 0 \\ -20 \end{pmatrix}$. State an equation for the resultant graph. $y = x^2 - 8x + 25 - 20$

Question 2

$\mathbf{f}(\mathbf{x}) = \mathbf{x}^3 - 5\mathbf{x} + 2$ Show that $f(x - 3) = x^3 - 9x^2 + 22x - 10$

$$f(x-3) = (x-3)^3 - 5(x-3) + 2$$

= (x²-6x+9)(x-3) - 5x + 15 + 2
= x³ - 3x² - 6x² + 18x + 9x - 27 - 5x + 15 + 2
= x³ - 9x² + 22x - 10

Question 3

You are given that $f(x) = 2x^3 + 7x^2 - 7x - 12$ Show that $f(x - 4) = 2x^3 - 17x^2 + 33x$

$$f(x-4) = (x-4+4)(2(x-4)-3)(x-4+1)$$

= $x(2x-8-3)(x-3)$
= $x(2x-11)(x-3)$
= $x(2x^2-11x-6x+33)$
= $2x^3-17x^2+33x$

Question 4

You are given that f(x) = (x + 1)(x - 2)(x - 4). The graph of y = f(x) is translated by $\binom{3}{0}$.

State an equation for the resulting graph. You need not simplify your answer.

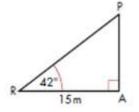
(x + 1 - 3)(x - 2 - 3)(x - 4 - 3)(x-2)(x-5)(x-7)ie

Total / 10

(4)

(1)

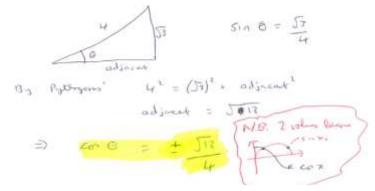
(3)


(2)

9 <u>Trigonometric ratios</u>

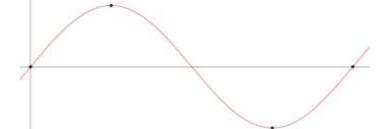
Question 1

AP is a telephone pole. The angle of elevation of the top of the pole from the point R on the ground is 42° as seen in the diagram.



Calculate the height of the pole. Give your answer to 3 significant figures.

Tan $42^\circ = \frac{opp}{adj}$	(M1)
$0.9004 = \frac{height of pole}{15}$	(M1)
13.5(06) m = height of pole	(A1)


Question 2

Given that $\sin \Theta = \frac{\sqrt{3}}{4}$, find in surd form the possible values of $\cos \Theta$.

Question 3

The graph of $y = \sin x$ for $0 \le x \le 360^\circ$ is shown below.

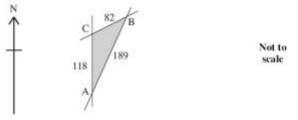
What are the coordinates of the 4 points labelled on the graph?

(0	.,0)
N	
	1)́
· · · · · · · · · · · · · · · · · · ·)
()	(4)

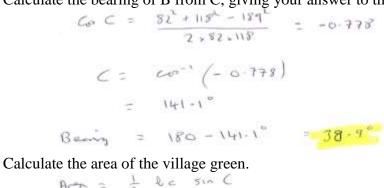
Total / 10

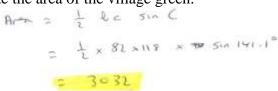
(3)

(3)


(4)

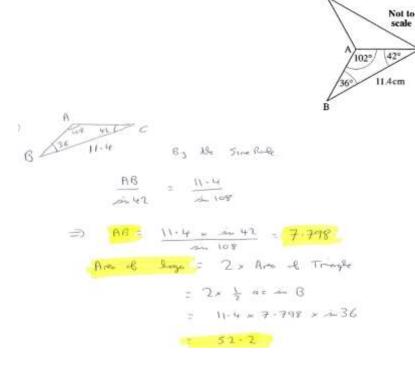
(2)


10 Sine / Cosine Rule


Question 1

This diagram shows a village green which is bordered by 3 straight roads AB, BC and CA. The road AC runs due North and the measurements are shown in metres.

(i) Calculate the bearing of B from C, giving your answer to the nearest 0.1°



Question 2

(ii)

This diagram shows a logo ABCD. It is symmetrical about AC. Find the length of AB and hence find the area of the logo

Total / 10

12

(4)