

The Bridge to A level Diagnosis

(4)

Solving quadratic equations

Question 1

1

Solve
$$x^2 + 6x + 8 = 0$$
 (2)

Question 2

Solve the equation $y^2 - 7y + 12 = 0$	
Hence solve the equation $x^4 - 7x^2 + 12 = 0$	

Question 3

(i)	Express $x^2 - 6x + 2$ in the form $(x-a)^2 - b$	
(ii)	State the coordinates of the minimum value on the graph of $y = x^2 - 6x + 2$	(3)
()		(1)

2 <u>Changing the subject</u>

Question 1

Make v the subject of the formula $E = \frac{1}{2} mv^2$

Question 2

Make r the subject of the formula $V = \frac{4}{3} \Pi r^2$

Question 3

Make c the subject of the formula $P = \frac{C}{C+4}$

Total / 10

(4)

(3)

3

Total / 10

Total / 10

(i)	Simplify $(3 + \sqrt{2})(3 - \sqrt{2})$	
		(2)

<u>Surds</u> 4

Question 1

(i)	Simplify $(3 + \sqrt{2})(3 - \sqrt{2})$	(2)
(ii)	Express $\frac{1+\sqrt{2}}{3-\sqrt{2}}$ in the form $a + b\sqrt{2}$ where a and b are rational	~ /

Question 2

(ii)

ntegers (i a (2)

i) Simplify
$$5\sqrt{8} + 4\sqrt{50}$$
. Express your answer in the form $a\sqrt{b}$ where a and b are in and b is as small as possible.

Express $\frac{\sqrt{3}}{6-\sqrt{3}}$ in the form $p + q\sqrt{3}$ where p and q are rational

у

$$x^{2} + y^{2} = 5$$
$$y = 3x + 1$$

Find the coordinates of the point of intersection of the lines
$$5x + 2y = 20$$
 and $y = 5 - x$

Question 2

Question 1

Find the coordinates of the point of intersection of the lines y = 3x + 1 and x + 3y = 6

Question 3

Solve the simultaneous equations

3 **Simultaneous equations**

(4)

(3)

(3)

(3)

5 <u>Indices</u>

Question 1

Simplify the following

(i)	a^0	(1)
(ii)	$a^6 \div a^{-2}$	(1)
(iii)	$(9a^{6}b^{2})^{-0.5}$	(1)
		(3)

Question 2

(i)	Find the value of $\left(\frac{1}{25}\right)^{-0.5}$	
(ii)	Simplify $\frac{(2x^2y^3z)^5}{2}$	(2)
	$4y^2z$	(3)

Total / 10

6 <u>Properties of Lines</u>

Question 1

A (0,2), B (7,9) and C (6,10) are three points.	
(i)	Show that AB and BC are perpendicular	(2)
(ii)	Find the length of AC	(3)
		(2)

Question 2

Find, in the form y = mx + c, the equation of the line passing through A (3,7) and B (5,-1).

Show that the midpoint of AB lies on the line x + 2y = 10

Total / 10

(5)

7 <u>Sketching curves</u>

Question 1

In the cubic polynomial f(x), the coefficient of x^3 is 1. The roots of f(x) = 0 are -1, 2 and 5.

Sketch the graph of y = f(x)

Question 2

Sketch the graph of $y = 9 - x^2$

Question 3

The graph below shows the graph of $y = \frac{1}{x}$

On the same axes plot the graph of $y = x^2 - 5x + 5$ for $0 \le x \le 5$

(4)

(3)

Transformation of functions

(2)

(2)

(2)

(2)

(2)

Question 1

The curve $y = x^2 - 4$ is translated by $\begin{pmatrix} 2 \\ 0 \end{pmatrix}$

Write down an equation for the translated curve. You need not simplify your answer.

Question 2

This diagram shows graphs A and B.

- (i) State the transformation which maps graph A onto graph B
- (ii) The equation of graph A is y = f(x).

Which one of the following is the equation of graph B?

$\mathbf{y} = \mathbf{f}(\mathbf{x}) + 2$	y = f(x) - 2	y = f(x+2)	y = f(x-2)
y = 2f(x)	y = f(x+3)	y = f(x-3)	y = 3f(x)

Question 3

- (i) Describe the transformation which maps the curve $y = x^2$ onto the curve $y = (x+4)^2$
- (ii) Sketch the graph of $y = x^2 4$

Total / 10

4 Feet

Total / 10

Trigonometric ratios 9

Question 1

Sidney places the foot of his ladder on horizontal ground and the top against a vertical wall.

The ladder is 16 feet long.

The foot of the ladder is 4 feet from the base of the wall.

- (i) Work out how high up the wall the ladder reaches. Give your answer to 3 significant figures.
- Work out the angle the base of the ladder makes with the ground. Give your answer to 3 significant (ii) figures

Question 2

Given that $\cos \Theta = \frac{1}{3}$ and Θ is acute, find the exact value of $\tan \Theta$

Question 3

(2)

(2)

(3)

(3)

(3)

(4)

10 <u>Sine / Cosine Rule</u>

Question 1

For triangle ABC, calculate

(i)	the length of BC
(1)	the length of BC

(ii) the area of triangle ABC

Question 2

The course for a yacht race is a triangle as shown in the diagram below. The yachts start at A, then travel to B, then to C and finally back to A.

Calculate the total length of the course for this race.

Total / 10